Mark Scheme 4755
 June 2007

Abstract

\square

 （

－

Section A			
1(i)	$\mathbf{M}^{-1}=\frac{1}{10}\left(\begin{array}{cc} 3 & 1 \\ -4 & 2 \end{array}\right)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { [2] } \end{aligned}$	Attempt to find determinant
1(ii)	20 square units	$\begin{aligned} & \mathrm{B} 1 \\ & \text { [1] } \\ & \hline \end{aligned}$	$2 \times$ their determinant
2	$\|z-(3-2 \mathrm{j})\|=2$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { [3] } \end{aligned}$	$\begin{aligned} & z \pm(3-2 j) \text { seen } \\ & \text { radius }=2 \text { seen } \\ & \text { Correct use of modulus } \end{aligned}$
3	$\begin{aligned} & x^{3}-4=(x-1)\left(A x^{2}+B x+C\right)+D \\ & \Rightarrow x^{3}-4=A x^{3}+(B-A) x^{2}+(C-B) x-C+D \\ & \Rightarrow A=1, B=1, C=1, D=-3 \end{aligned}$	M1 B1 B1 B1 B1 [5]	Attempt at equating coefficients or long division (may be implied) For $A=1$ B1 for each of B, C and D
4(i)		$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { [2] } \end{aligned}$	One for each correctly shown. s.c. B1 if not labelled correctly but position correct
4(ii)	$\alpha \beta=(1-2 \mathrm{j})(-2-\mathrm{j})=-4+3 \mathrm{j}$	M1 A1 [2]	Attempt to multiply
4(iii)	$\frac{\alpha+\beta}{\beta}=\frac{(\alpha+\beta) \beta^{*}}{\beta \beta^{*}}=\frac{\alpha \beta^{*}+\beta \beta^{*}}{\beta \beta^{*}}=\frac{5 \mathrm{j}+5}{5}=\mathrm{j}+1$	M1 A1 A1 [3]	Appropriate attempt to use conjugate, or other valid method 5 in denominator or correct working consistent with their method All correct

\begin{tabular}{|c|c|c|c|}
\hline 5 \& Scheme A
$$
\begin{aligned}
& w=3 x \Rightarrow x=\frac{w}{3} \\
& \Rightarrow\left(\frac{w}{3}\right)^{3}+3\left(\frac{w}{3}\right)^{2}-7\left(\frac{w}{3}\right)+1=0 \\
& \Rightarrow w^{3}+9 w^{2}-63 w+27=0
\end{aligned}
$$ \& B1
M1
A3

A1

[6] \& | Substitution. For substitution $x=3 w$ give B0 but then follow through for a maximum of 3 marks |
| :--- |
| Substitute into cubic |
| Correct coefficients consistent with x^{3} coefficient, minus 1 each error |
| Correct cubic equation c.a.o. |

\hline \& | Scheme B $\begin{aligned} & \alpha+\beta+\gamma=-3 \\ & \alpha \beta+\alpha \gamma+\beta \gamma=-7 \\ & \alpha \beta \gamma=-1 \end{aligned}$ |
| :--- |
| Let new roots be k, l, m then $\begin{aligned} & k+l+m=3(\alpha+\beta+\gamma)=-9=\frac{-B}{A} \\ & k l+k m+l m=9(\alpha \beta+\alpha \gamma+\beta \gamma)=-63=\frac{C}{A} \\ & k l m=27 \alpha \beta \gamma=-27=\frac{-D}{A} \\ & \Rightarrow \omega^{3}+9 \omega^{2}-63 \omega+27=0 \end{aligned}$ | \& M1

M1

A3

A1

[6] \& | Attempt to find sums and products of roots (at least two of three) |
| :--- |
| Attempt to use sums and products of roots of original equation to find sums and products of roots in related equation |
| Correct coefficients consistent with x^{3} coefficient, minus 1 each error |
| Correct cubic equation c.a.o. |

\hline 6(i) \& $$
\frac{1}{r+2}-\frac{1}{r+3}=\frac{r+3-(r+2)}{(r+2)(r+3)}=\frac{1}{(r+2)(r+3)}
$$ \& M1

A1
[2] \& Attempt at common denominator

\hline 6(i) \& $$
\begin{aligned}
& \sum_{r=1}^{50} \frac{1}{r+2)(r+3)}=\sum_{r=1}^{50}\left[\frac{1}{r+2}-\frac{1}{r+3}\right] \\
& =\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+\ldots . . \\
& +\left(\frac{1}{51}-\frac{1}{52}\right)+\left(\frac{1}{52}-\frac{1}{53}\right) \\
& =\frac{1}{3}-\frac{1}{53}=\frac{50}{159}
\end{aligned}
$$ \& M1

M1,
M1
A1

[4] \& | Correct use of part (i) (may be implied) |
| :--- |
| First two terms in full |
| Last two terms in full (allow in terms of n) |
| Give B4 for correct without working Allow 0.314 (3s.f.) |

\hline
\end{tabular}

7	$\sum_{r=1}^{n} 3^{r-1}=\frac{3^{n}-1}{2}$ $n=1$, LHS $=$ RHS $=1$ Assume true for $n=k$ Next term is 3^{k} Add to both sides RHS $=\frac{3^{k}-1}{2}+3^{k}$	B1	E1
$=\frac{3^{k}-1+2 \times 3^{k}}{2}$	M1 Assuming true for k		
Attempt to add 3^{k} to RHS			
$=\frac{3 \times 3^{k}-1}{2}$			
$=\frac{3^{k+1}-1}{2}$	A1	c.a.o. with correct simplification	
But this is the given result with $k+1$ replacing k. Therefore if it is true for k it is true for $k+1$. Since it is true for $k=1$, it is true for $k=1,2,3$ and so true for all positive integers.	E1	Dependent on previous E1 and immediately previous A1	
	E1	Dependent on B1 and both previous E marks	

Section A Total: 36

Section B			
8(i) 8(ii)	$(2,0),(-2,0),\left(0, \frac{-4}{3}\right)$	B1 B1 B1 [3]	1 mark for each s.c. B2 for $2,-2, \frac{-4}{3}$
	$x=3, x=-1, x=1, y=0$	$\begin{aligned} & \text { B4 } \\ & \text { [4] } \end{aligned}$	Minus 1 for each error
	Large positive $x, y \rightarrow 0^{+}$, approach from above (e.g. consider $x=100$) Large negative $x, y \rightarrow 0^{-}$, approach from below (e.g. consider $x=-100$)	B1 B1 M1 [3]	Direction of approach must be clear for each B mark Evidence of method required
8(iv)	Curve 4 branches correct Asymptotes correct and labelled Intercepts labelled	B2 B1 B1 [4]	Minus 1 each error, min 0

9(i)	$x=1-2 \mathrm{j}$	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	
9(ii)	Complex roots occur in conjugate pairs. A cubic has three roots, so one must be real. Or, valid argument involving graph of a cubic or behaviour for large positive and large negative x.	E1 [1]	
9(iii)			
	Scheme A		
	$(x-1-2 \mathrm{j})(x-1+2 \mathrm{j})=\mathrm{x}^{2}-2 x+5$	M1	Attempt to use factor theorem
	$(x-\alpha)\left(x^{2}-2 x+5\right)=x^{3}+A x^{2}+B x+15$	$\begin{gathered} \text { A1 } \\ \text { A1(ft) } \end{gathered}$	Correct factors Correct quadratic(using their factors)
	comparing constant term:	M1	Use of factor involving real root
	$-5 \alpha=15 \Rightarrow \alpha=-3$	M1	Comparing constant term
	So real root is $x=-3$	A1(ft)	From their quadratic
	$(x+3)\left(x^{2}-2 x+5\right)=x^{3}+A x^{2}+B x+15$	M1	Expand LHS
	$\Rightarrow x^{3}+x^{2}-x+15=x^{3}+A x^{2}+B x+15$	M1	Compare coefficients
	$\Rightarrow A=1, B=-1$	A1	1 mark for both values
	OR	[9]	
	Scheme B		
	Product of roots $=-15$	M1	
		A1	Attempt to use product of roots
	$(1+2 \mathrm{j})(1-2 \mathrm{j})=5$	M1	Product is -15
		A1	Multiplying complex roots
	$\Rightarrow 5 \alpha=-15$	A1	
	$\begin{aligned} & \Rightarrow \alpha=-3 \\ & \text { Sum of roots }=-A \end{aligned}$	A1	c.a.o.
	$\Rightarrow-A=1+2 j+1-2 j-3=-1 \Rightarrow A=1$	M1	Attempt to use sum of roots
	Substitute root $x=-3$ into cubic $(-3)^{3}+(-3)^{2}-3 B+15=0 \Rightarrow B=-1$	M1	Attempt to substitute, or to use sum
	$A=1$ and $B=-1$	A1 [9]	c.a.o.
	OR		
	Scheme C		
	$\alpha=-3$	6	As scheme A, or other valid method
	$(1+2 \mathrm{j})^{3}+A(1+2 \mathrm{j})^{2}+B(1+2 \mathrm{j})+15=0$	M1	Attempt to substitute root
	$\begin{aligned} & \Rightarrow A(-3+4 \mathrm{j})+B(1+2 \mathrm{j})+4-2 \mathrm{j}=0 \\ & \Rightarrow-3 A+B+4=0 \text { and } 4 A+2 B-2=0 \end{aligned}$	M1	Attempt to equate real and imaginary parts, or equivalent.
	$\Rightarrow A=1$ and $B=-1$	$\begin{aligned} & \text { A1 } \\ & \text { [9] } \end{aligned}$	c.a.o.

Section B (continued)			
10(i)	$\begin{aligned} & \mathbf{A B}=\left(\begin{array}{ccc} 1 & -2 & k \\ 2 & 1 & 2 \\ 3 & 2 & -1 \end{array}\right)\left(\begin{array}{ccc} -5 & -2+2 k & -4-k \\ 8 & -1-3 k & -2+2 k \\ 1 & -8 & 5 \end{array}\right) \\ & =\left(\begin{array}{ccc} k-21 & 0 & 0 \\ 0 & k-21 & 0 \\ 0 & 0 & k-21 \end{array}\right) \\ & n=21 \end{aligned}$	M1 A1 [2]	Attempt to multiply matrices (can be implied)
10(ii)	$\mathbf{A}^{-1}=\frac{1}{k-21}\left(\begin{array}{ccc} -5 & -2+2 k & -4-k \\ 8 & -1-3 k & -2+2 k \\ 1 & -8 & 5 \end{array}\right)$	M1 M1 A1	Use of B Attempt to use their answer to (i) Correct inverse
	$k \neq 21$	A1 [4]	Accept n in place of 21 for full marks
10 (iii)	Scheme A $\frac{1}{-20}\left(\begin{array}{ccc} -5 & 0 & -5 \\ 8 & -4 & 0 \\ 1 & -8 & 5 \end{array}\right)\left(\begin{array}{c} 1 \\ 12 \\ 3 \end{array}\right)=\frac{1}{-20}\left(\begin{array}{l} -20 \\ -40 \\ -80 \end{array}\right)=\left(\begin{array}{l} 1 \\ 2 \\ 4 \end{array}\right)$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$	Attempt to use inverse Their inverse with $k=1$
	$x=1, y=2, z=4$ OR Scheme B	$\begin{aligned} & \text { A3 } \\ & {[5]} \end{aligned}$	One for each correct (ft)
	Attempt to eliminate 2 variables Substitute in their value to attempt to find others $x=1, y=2, z=4$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A3 } \\ & {[5]} \end{aligned}$	s.c. award 2 marks only for $x=1, y=2, z=4$ with no working.
			Section B Total: 36
			Total: 72

